Careful! Health news headlines can be deceiving

c31004b6-0b67-45dc-b092-ddf0ab3a0ddb

Ever read a headline that catches your eye but then found the story itself disappointing? Or worse, did you feel that the dramatic headline was utterly misleading? Yeah, me too.

The impact of a well-crafted headline can be big. We often skim the headlines, then decide whether or not to read on.

Previously, I’ve written about how media coverage of drug research can mislead or confuse. Here I’m zooming in on health headlines, which can be equally deceptive. Watch for these pitfalls.

Overstated study findings

  • Were humans studied? If a study finds that a drug is safe and effective for an important disease, that’s big news. But what if all of the study subjects were mice? Leaving out this important detail from the headline exaggerates the study’s importance.
  • Too much drama. Dramatic terms such as “breakthrough” or “groundbreaking” are common in headlines about medical research. Yet true breakthroughs are quite rare. That’s the nature of science: knowledge tends to accumulate slowly, with each finding building a bit on what came before.
  • Going too far. Headlines often make a leap of faith when summarizing a study’s findings. For example, if researchers identify a new type of cell in the blood that increases when a disease is worsening, they may speculate that treatments to reduce those cells might control the disease. “Researchers discover new approach to treatment!” blares the headline. Sure, that could happen someday (see below), but it’s an overstatement when the study wasn’t even assessing treatment.
  • Overlooking the most important outcome. Rather than examining how a treatment affects heart disease, let’s say, studies may assess how it affects a risk factor for it. A good example is cholesterol. It’s great if a drug lowers cholesterol, but much better if it lowers the rate of cardiovascular disease and deaths. Headlines rarely capture the important difference between a “proxy measure” (such as a risk factor) and the most important outcome (such as rates of death).

Faulty logic

  • A link for illness is not the same as a cause of illness. The distinction between “causation” and an “association” is important. Observational studies can determine whether there is a link (association) between two health issues, such as a link between a symptom (like a headache) and a disease (like stomach ulcers). But that doesn’t mean one actually caused the other. Imagine an observational study that compared thousands of headache sufferers with thousands of people who rarely had headaches. If more people in the frequent headache group also had more stomach ulcers, the headline might boldly declare “Headaches cause ulcers!” A more likely explanation is that people with a lot of headaches are taking aspirin, ibuprofen, and related drugs, which are known causes of ulcers.

Hazy on key details

  • Someday isn’t today. Studies of new drugs or devices may be heralded as life-changing for people or practice-changing for doctors. Yet, a closer look often reveals that the new treatment is years away from reaching the market — or it may never get approved at all.
  • A work in progress. “Preliminary” is the missing word in many headlines. Studies presented at medical conferences but not yet published in a peer-reviewed medical journal offer preliminary insights. This research, while promising at the time, may ultimately be a scientific dead end.
  • Is it a study, a press release, or an ad? It’s hard to tell with some headlines. Press releases or advertisements typically present a positive spin on new findings or treatments. We expect news stories to be more balanced.

One story, many headlines

Here’s a great example of overhyped headlines. A 2021 study presented findings about a pacemaker that treats abnormal heart rhythms for a period of time and then dissolves. Amazing, right? For people who need a pacemaker only temporarily, a dissolving pacemaker could allow them to avoid a surgical procedure to remove it once it was no longer needed.

Three headlines covering this research spun the story this way:

Coming Soon: An Implanted Pacemaker That Dissolves Away After Use

Could people one day get pacemakers that dissolve into the body?

First-ever transient pacemaker harmlessly dissolves in body

But that dissolving pacemaker had never been tried in living humans — an important fact! To test the dissolving pacemaker, the researchers had performed open-heart surgery in rats and dogs, and lab experiments on heart tissue removed from mice, rabbits, and deceased humans.

The first headline demonstrates the pitfall of overpromising on the findings of preliminary research: yes, a dissolving pacemaker might someday be routine in humans, but it’s unlikely to be “coming soon.” And when a headline says “harmlessly dissolves in body,” we might reasonably think this refers to a livinghuman body. Not so.

The bottom line

Why are we constantly bombarded with misleading headlines? A major reason is that headlines attract attention, clicks, reads, subscriptions, and influence essential to media sites. Some writers and editors lean into hype, knowing it attracts more attention. Others may not be trained to read or present medical news carefully enough.

In a world full of misleading health news headlines, here’s my advice: be skeptical. Consider the source and read past the headline before buying in. And if your go-to media often serves up misleading headlines, consider changing channels or crossing that news source off your list.

What it takes to achieve world-changing scientific breakthroughs

fd30f478-b920-4e18-b0d1-ad48129e30a2

In science, advances are a daily occurrence, but true breakthroughs are rare. What does it take to achieve world-changing scientific breakthroughs? Some are the result of a lucky accident, combined with curiosity: scientists traveling down one road suddenly find reason to veer onto another road, one they never planned to travel — a road that may well lead nowhere.

Other major breakthroughs stem from scientists pursuing a very specific dream. One day, usually early in their career, they get an idea that they can’t stop thinking about. It’s crazy, they say to themselves, but is it really impossible? They talk to respected colleagues who often remind them of all the reasons their idea might not work, and how damaging this could be for their career. It’s a sobering message, yet the idea won’t die. So, they scramble to find financial support and seek out colleagues willing to risk traveling that road with them — a road that may well lead nowhere. But sometimes the road leads to major breakthroughs like penicillin and mRNA vaccines.

Breakthroughs due to lucky accidents and curiosity

One day in 1928, Dr. Alexander Fleming at St. Mary’s Hospital in London was growing bacteria in a laboratory dish. Fleming was not pursuing a scientific dream. He was a microbiologist, just doing his job.

Then he noticed something odd: overnight, another kind of microbe, a fungus, had traveled through the air, landed on the laboratory dish, and started to grow and spread on the dish where the bacteria were growing. Fleming soon noticed that the growing fungus seemed to be killing the bacteria. He surmised that it was making some substance that killed the bacteria. Because the name of the fungus was Penicillium rubens, he called the substance the fungus was making “penicillin.”

When Fleming published a paper about his discovery, few were interested. It took another 10 years before other scientists tried to generate large amounts of penicillin to see if it might be able to cure bacterial infections and save lives. We all know how that worked out.

Fleming’s scientific breakthrough, like some others, occurred not because Fleming had a brilliant idea and exclaimed “Eureka!” Instead, it occurred because he noticed something and said, “That’s odd,” and then tried to figure it out.

Breakthroughs due to persistence and resilience in pursuit of a dream

The story of mRNA vaccines, like the Pfizer/BioNTech and Moderna vaccines for COVID-19, is very different from the story of penicillin. For 30 years, a small group of scientists believed that mRNA vaccines would have great advantages over traditional vaccines — if only several obstacles could be overcome. Many of these scientists gave up as they encountered those obstacles, but a few persisted and, ultimately, succeeded. (I described what mRNA vaccines are, how they work, and how obstacles were overcome in a previous blog post.)

One scientist, Dr. Katalin Karikó, joined the faculty of the University of Pennsylvania in the early 1990s with the dream of creating an mRNA vaccine. She applied for grants to support her work, but was repeatedly rejected: the reviewers stated that it was so unlikely that she or anyone could overcome the obstacles that supporting her research would be a wasted investment. Her university only agreed to continue supporting her work if she accepted a demotion and a pay cut. She accepted both, and doggedly pursued her dream.

One major obstacle to mRNA vaccines particularly fascinated her: the violent reaction of the immune system when it encounters mRNA from a virus. Ten years of dogged work helped Karikó and her colleague Drew Weissman figure out how to make a small change in mRNA that prevented that violent immune response — a major step in making all mRNA vaccines possible. Without this, the world wouldn’t have mRNA COVID vaccines today.

Two other scientists who created the Pfizer/BioNTech COVID vaccine, Uğur Şahin and Őzlem Turëci, are Turkish immigrants to Germany who met, fell in love with the idea of creating an mRNA vaccine, and then fell in love with each other. According to The Wall Street Journal, one day in 2002 they took a break for lunch, got married, and then returned in the afternoon to their laboratory to finish an experiment — just one more among many conducted over 30 years. Each experiment was one more possible step toward their ultimate dream until finally, in 2020, they achieved that dream: their mRNA vaccine for COVID-19 proved to be very safe and effective.

Holding hard to their dreams

Whichever path scientists who achieve lifesaving breakthroughs travel, they often endure disinterest, like Fleming, or repeated skepticism, ridicule, and rejection, like Karikó, Weissman, Şahin, and Turëci. Only through sheer persistence did these scientists bring their dreams to life. They have been rewarded with fame and wealth and something even more valuable: the knowledge that because of their work hundreds of millions of people around the world never got sick, and millions never died before their time.

Of course, a relentless obsession with an improbable dream fails to pay off for many scientists. Their ideas, while quite brilliant, in the end are proved wrong: nature doesn’t turn out to operate the way they predicted. In the end, their beautiful theory is murdered by a brutal gang of facts.

Still other scientific dreamers ultimately prove to have been on the right track all along and would have achieved their dream — if only they had done the experiment a little differently, if only they had persisted a little longer, or if only the support for their work had not run out. As a result, neither they nor the rest of us benefitted from what would have been — until other scientists rediscovered their work years later.

Ultimately, scientific breakthroughs are possible only if a society is willing to invest in dreamers, recognizing that not all investments will lead to major breakthroughs. However, the investments that do lead to breakthroughs bring an economic return that is far greater than the investment — as well as preventing suffering and death and changing the world.

Want to participate in COVID-19 research? Download the COVID Symptom Study app to help researchers track symptoms and hot spots across the US. Click here for information.

A conversation about reducing the harms of social media

495c6518-f40e-4082-add7-640a7441e890

Editor's note: In this blog post, Dr. Sharon Levy interviews her son Isaiah Levy, a college student. We appreciate Isaiah’s insights and comments on social media's impact on teens and young adults.

It is hard to remember (or for younger people, hard to imagine) a world without social media, but indeed such a world once existed — and in fact, it is the world humans evolved in.

Humans are social animals. Friendly interactions release dopamine in our brains’ reward centers to get us to repeat the behavior. Until recently, that feedback loop suited us very well, with little opportunity to get off track. Social media changed things by providing the opportunity for nearly infinite interactions. This excess exploits our natural inclination for social contact in the same way that sweets exploit our natural drive to eat ripe fruit. Too much refined sugar can cause a cascade of medical problems; too much social media can also affect health — especially mental health.

Beyond sheer volume, social media interactions are qualitatively different from in-person meetings. For one thing, social media platforms have developed easy opportunities for viewers to react to content, resulting in objective feedback metrics for the content creator. Because the denominator is essentially infinite, no matter how many likes a post gets, the numerator may not feel like enough. Feeling insufficient, not liked enough, judged by others, or excluded from an "in group" takes a heavy toll on mental health.

For perspective from a digital native, I posed questions about social media to my son Isaiah Levy, a computer science major at New York University.

What do you see as the benefits of social media?

Theoretically, social media can connect people across the globe at scale, presenting an opportunity for users to form relationships beyond their geographic boundaries. Popular social media platforms can also provide a stage with a potential audience of one billion eyes. Social media offers tremendous potential for people who want to be noticed. However, most connections are extensions of our real-life relationships, and many users say that social media enriches friendships. For example, a Pew survey found that a majority of teenage respondents said that Instagram enhanced their connections with people they already knew (many of whom are classmates).

Why is Instagram so popular with young people?

Web developers and graphic designers created Instagram using sophisticated algorithms and attractive visual presentation, to keep users engaged and interacting with its nearly limitless content for as long as possible. According to surveys done by Facebook (owner of Instagram), youth describe Instagram as current, friendly, trendy, and creative. Many teens say that Instagram helps define who they are and makes them feel more connected to the people they know. Another significant source of Instagram's allure, particularly for younger users, are the objective feedback measures that can make users feel important or of high social status.

The flip side is that the drive for attention creates its own problems. The Pew survey linked to above found that more than one-third of teen Instagram users said they feel pressure to post content that will get a lot of likes and comments, and more than 40% feel pressure to only post content that makes them look good. According to Facebook’s own internal surveys, more than 13% of teen girls said that Instagram worsens suicidal thoughts, and 17% said their eating disorders got worse with Instagram use.

As the government considers regulating social media, what suggestions do you have in regard to protecting mental health?

Government regulations should protect our freedom of expression while mediating risks, especially to children. The government could consider regulating some of the advanced algorithms that social media corporations use to increase user time expenditure (and thus profits). For example, "infinite swiping" is a design feature that continuously pushes forward new content after a user has exhausted content from the people they follow. These tactics pose serious threats. Just like use of alcohol, nicotine, or drugs, the act of swiping triggers neurological reward. Over time, the brain learns to seek social media instead of more natural rewards, putting users at risk of dissociation with meaningful priorities. As with drug addiction, younger users are at greatest risk. Government regulation of the most sticky algorithms would help promote a healthier balance for users. Deciding which algorithms to ban and how to implement such a ban is certainly a difficult task, and the solution will not be perfect; however, given what we know of the impact of social media on children’s mental health, it should be a federal priority.

While the government grapples with regulation, parents can step in. First, set a good example by putting your own screens down when interacting with your children. Talk to your teen about the pros and cons of social media: while it can be fun, it can also become a distraction. Set limits on your child’s social media use. Most importantly, talk to your children about their experiences, including who they are interacting with and what they are talking about. We know social media can harm mental health, so be on the lookout and intervene if you have concerns.

Preventing preeclampsia may be as simple as taking an aspirin

Preeclampsia is a common and dangerous complication of pregnancy that causes high blood pressure and excess protein in urine. Typically, it occurs during the third trimester or very soon after birth, but there may be a simple way to help prevent it.

If you’re pregnant, preeclampsia can cause kidney and liver abnormalities, blood clotting problems, headache, stroke, and even death. It makes it harder to deliver nutrients and oxygen to a growing fetus. And it’s linked to premature birth and low birthweight in babies. Yet a daily low-dose aspirin may help prevent many of these problems, according to a recent statement from the US Preventive Services Task Force (USPSTF).

Who is most likely to develop preeclampsia?

While preeclampsia can happen without any warning, certain risk factors make it more likely to occur:

  • carrying multiples, such as twins or triplets
  • having diabetes
  • being 35 or older
  • having obesity, described as a body mass index (BMI) greater than 30
  • having high blood pressure before pregnancy
  • having kidney disease or an autoimmune disorder.

Preeclampsia also occurs more often in Black people as a result of structural racism, which restricts access to care, and can also be a source of chronic stress from factors like food and housing insecurity that lead to poorer health and well-being.

Overall, preeclampsia affects about one in 25 pregnancies in the United States. It accounts for almost one out of every five medically-induced premature births. Preventing it will save lives.

What does the task force recommend to help prevent preeclampsia?

In the 2021 statement, the USPSTF recommends that doctors prescribe a daily low-dose (81 mg) aspirin for those at high risk for preeclampsia. The aspirin should be started at the end of the first trimester (12 weeks of pregnancy) and continued until the birth.

This supports a previous recommendation from the task force in 2014. And importantly, the statement reflects findings from a recent systematic review of research. The review looked at the role of aspirin in preventing preeclampsia, and whether aspirin can reduce complications among pregnant people, fetuses, and newborns. It also examined the safety of low-dose aspirin in pregnancy.

What did the review tell us?

Thirty-four randomized clinical trials comparing low-dose aspirin and placebo (a sugar pill) were included in the analysis. Most participants in the trials were young and white. Providing low-dose aspirin to those who were at high risk of preeclampsia successfully reduced risk for

  • developing preeclampsia
  • preterm birth (births before 37 weeks of pregnancy)
  • growth restriction (small babies)
  • fetal and newborn death due to preeclampsia.

The review considered whether using aspirin led to more bleeding problems. When comparing the aspirin group and the placebo group, no differences occurred in bleeding problems, such as maternal hemorrhage following a birth, fetal brain bleeding, and the placenta separating from the wall of the uterus too early.

Who should take low-dose aspirin during pregnancy?

Overall, the benefits of taking low-dose aspirin outweigh risks for some pregnant people. Your doctor may recommend it if you

  • have had preeclampsia before
  • already have high blood pressure or diabete
  • are carrying multiples, such as twins or triplets
  • have kidney or autoimmune disease.

It’s important to know that there are moderate risk factors to consider, too. When combined, they can increase the chance of preeclampsia and its complications. Your doctor may recommend low-dose aspirin if you have two or more of these factors:

  • having your first baby
  • having obesity
  • having a mother or sister who had preeclampsia
  • being 35 years old or older
  • having conceived with in-vitro fertilization (IVF)
  • having had a baby before who was small for gestational age
  • having a difficult pregnancy outcome in the past.

Unequal distribution of healthcare, and social and environmental stress, make preeclampsia and its complications more likely to occur in pregnant people who are Black and those who have lower income. Therefore, the task force recommends low-dose aspirin for these pregnant individuals even if they have only one moderate risk factor.

The bottom line

New evidence supports using low-dose aspirin to help prevent preeclampsia, a dangerous and common complication of pregnancy. If you’re pregnant or considering pregnancy, talk with your doctor or midwife about preeclampsia. It’s important to learn the warning signs of possible problems even if you’re not at high risk. Together, you can decide whether low-dose aspirin is a good choice for you.